Solid State Relays 1-Phase, Zero Cross or Instant On Switching 25 AAC, 230 VAC with LED and Built-in Transil Types RF1A, RF1B

- AC switching Solid State Relay
- Switching through back to back thyristors
- · Long lifetime through reduced stress on output chip
- Operational ratings: up to 280 VAC, 25 AAC
- Control voltage: 5 VDC, 12 VDC, 24 VDC
- LED for control status indication
- Integrated overvoltage protection on output
- Opto isolation input to output 3750 VAC
- 100k cycles endurance test according to UL508
- Pre-attached thermal interface to SSR backplate

Product Description

The RF1 series provides a compact solid state switching solution suited for confined spaces. Long life time is ensured by the use of assembly technology that reduces stresses on the power semiconductors.

The RF1 series is suitable for resistive loads. The zero switching type (RF1A), switches ON when the voltage crosses zero. The instant-ON type

Specifications are stated at 25°C unless otherwise noted

Ordering Key

control voltage is applied. Switch OFF occurs when current crosses zero. Integrated transils provide pro-

(RF1B), switches on when the

green LED indicates presence of the control voltage. FAS-TON terminals enable fast installation. The RF1 is provided with pre-attached thermal interface ready for mounting on chassis or heatsink.

tection against overvoltages. A

Ordering Key	RF 1 A 23 D 25 _
SSR series	
Number of switching poles —	
Switching mode	
Rated operational voltage ——	
Control voltage	
Rated operational current —	
Options	

Switching mode	Rated voltage	Control voltage	Rated current*
RF1A: Zero Cross (ZC) RF1B: Instant On (IO)	23: 230 VAC (24 - 280 VAC),	L: 5 VDC M: 12 VDC	25: 25 AAC
	50/60 Hz	D: 24 VDC	

Selection Guide

Rated output voltage, Switching mode	Blocking voltage	Control voltage range	Rated operational current*
230 VAC, ZC	600 Vp	4.25 - 9.0 VDC 9.0 - 18.0 VDC	RF1A23L25 RF1A23M25
		18.0 - 28.8 VDC	RF1A23D25
230 VAC, IO	600 Vp	4.5 - 9.0 VDC 11.0 - 18.0 VDC 18.0 - 28.8 VDC	RF1B23L25 RF1B23M25 RF1B23D25

* Max. 25 AAC with suitable heatsink. Refer to Heatsink Selection tables.

General Specifications

Latching voltage (across L-T)	≤20 V
Operational frequency range	45 to 65 Hz
Leakage current @ rated voltage	< 3m AAC
Power factor	> 0.9 @ rated voltage

Rated impulse withstand voltage, U _{imp}	4 kV (1.2/50µs) for Overvoltage Category III
Isolation Input to Output Input & Output to Case	3750 Vrms 2500 Vrms

Output Specifications

Rated operational current* AC-51 (IEC/EN 60947-4-3, UL508)	25 AAC
Minimum operational current	150 mA
Rep. overload current -	
UL508: T=40°C, tON=1s, tOFF=9s, 50 cycles	40 AAC
Non-repetitive surge current (t=10ms)	325 Ap

On state voltage drop	< 1.3 V
l²t for fusing (t=10ms) minimum	525 A²s
Critical dV/dt @ Tj init = 40°C	1000 V/us
Endurance testing acc. to UL508	100,000 cycles

* Max. 25 AAC with suitable heatsink. Refer to Heatsink Selection tables.

Output Voltage Specifications

Operational Voltage Range	24-280 VAC
Blocking voltage	600 Vp
Output protection	Integrated transil

Input specifications

		RF1L	RF1M	RF1D
Control voltage range	RF1A	4.25 - 9.0 VDC	9.0 - 18.0 VDC	18.0 - 28.8 VDC
	RF1B	4.5 - 9.0 VDC	11.0 - 18.0 VDC	18.0 - 28.8 VDC
Pick-up voltage	RF1A	4.25 VDC	9.0 VDC	18.0 VDC
	RF1B	4.5 VDC	11.0 VDC	18.0 VDC
Drop-out voltage		1.0 VDC	1.0 VDC	1.0 VDC
Maximum Reverse voltage		9.0 VDC	18.0 VDC	28.8 VDC
Max Response time pick-up				
RF1A		1/2 cycle	1/2 cycle	1/2 cycle
RF1B		1 ms	1 ms	1 ms
Response time drop-out				
RF1A		1/2 cycle	1/2 cycle	1/2 cycle
RF1B		1/2 cycle	1/2 cycle	1/2 cycle
Input current		refer to diagrams below		

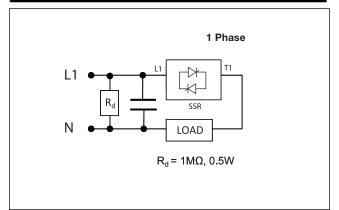
Agency Approvals and Conformances

Conformance

IEC/EN 62314 IEC/EN 60947-4-3 Agency Approvals

UR: UL508 Recognised, NRNT2 E80573 cUR: CSA 22.2 No.14-10, NRNT8 E80573 CSA: CSA 22.2 No.14-10, 204075 VDE: DIN EN 60947-4-3 (VDE 0660-109) DIN EN 60335-1 (VDE 0700-1)

C € :¶]us 🚯 🖄

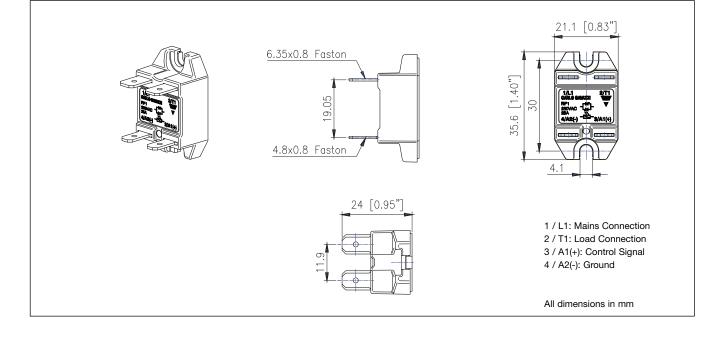

Electromagnetic Compatibility

EMC Immunity	IEC/EN 60947-4-3	Radiated Radio Frequency	
Electrostatic Discharge (ESD)		Immunity 10V/m. 80 - 1000 MHz	IEC/EN 61000-4-3 Performance Criteria 1
Immunity	IEC/EN 61000-4-2	10V/m, 1.4 - 2 GHz	Performance Criteria 1
Air discharge, 8 kV	Performance Criteria 2	3V/m, 2 - 2.7 GHz	Performance Criteria 1
Contact, 4 kV	Performance Criteria 2	Conducted Radio Frequency	IEC/EN 61000-4-6
Electrical Fast Transient		Immunity	
(Burst) Immunity	IEC/EN 61000-4-4	10V/m, 0.15 - 80 MHz	Performance Criteria 1
Output: 2 kV, 5kHz	Performance Criteria 2	Voltage Dips Immunity	IEC/EN 61000-4-11
Input: 1 kV, 5kHz	Performance Criteria 2	0% for 0.5/1 cycle	Performance Criteria 2
Electrical Surge Immunity	IEC/EN 61000-4-5	40% for 10 cycles 70% for 250 cycles	Performance Criteria 2 Performance Criteria 2
Output, line to line, 1 kV	Performance Criteria 1	,	IEC/EN 61000-4-11
Output, line to earth, 2 kV	Performance Criteria 1	Voltage Interruptions Immunity 0% for 5000 ms	Performance Criteria 2
Input, line to line, 500 V	Performance Criteria 1	070101 3000 113	
Input, line to earth, 500 V	Performance Criteria 1		
EMC Emission	IEC/EN 60947-4-3	Radio Interference	
Radio Interference		Field Emission (Radiated)	IEC/EN 55011
Voltage Emission (Conducted)	IEC/EN 55011	30 - 1000MHz	Class B
0.15 - 30MHz	Class A (for currents >15 AAC a filter 100 nF/ 275 VAC/ X1 is needed for compliance)		

Note:

- Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However when the test is complete the product should return operating as intended by itself.
- Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.
- Control input lines must be installed together to maintain products' susceptability to Radio Frequency interference.
- Use of AC solid state relays may, according to the application and the load current, cause conducted radio interferences. Use of mains filters may be necessary for cases where the user must meet E.M.C requirements. The capacitor values given inside the filtering specification tables should be taken only as indications, the filter attenuation will depend on the final application.

Filter Connection Diagram

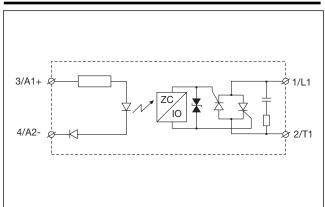


Environmental and Housing Specifications

RoHS (2011/65/EU)	Compliant
Pollution degree	2 (non-conductive pollution with possibilities of condensation)
Impact resistance (EN50155, EN61373)	15/11 g/ms
Vibration resistance (2-100Hz, IEC60068-2-6, EN50155, EN61373)	2 g
Weight	approx. 15 g approx. 210 g (box of 10 pcs.)
Material	PA66, RAL7035

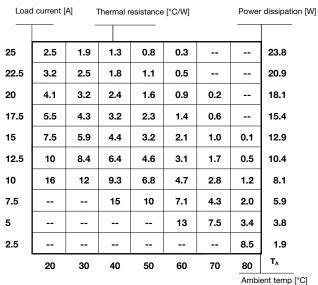
Relative humidity	95% non-condensing @ 40°C
UL flammability rating (housing)	UL 94 V0
Installation altitude	0-1000 m. Above 1000 m derate linearly by 1% of FLC per 100 m up to a maximum of 2000 m
GWIT & GWFI	conforms to EN 60335-1 requirements

Terminal Layout and Dimensions

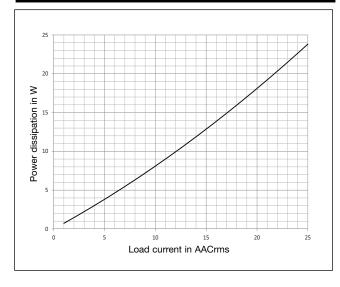


Connection Specifications

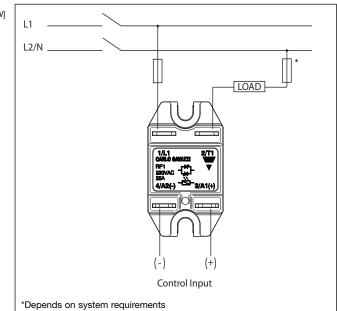
SSR mounting screws	M4
Terminal material	CuEtp, Nickel plated copper
Mounting torque	1.0Nm (8.85lb-in)
Fastons pull out force*	130N
Connection type power: 1/L1, 2/T1	Faston 6.35 x 0.8mm
Connection type control: 3/A1+, 4/A2-	Faston 4.8 x 0.8mm
*Defer to Installation instructions	


*Refer to Installation instructions

Functional Diagram



Heatsink Selection



Note: These thermal resistance values are only applicable to the RF1 using the pre-attached thermal interface.

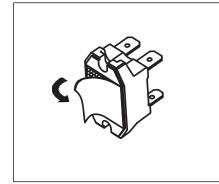
Output Power Dissipation (PD)

Connection Diagram

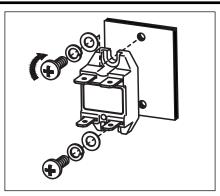
Thermal Specifications

•				
Operating temperature	-30 °C to 80 °C (-22 to 176 °F)			
Storage temperature	-40 °C to 100 °C (-40 to 212 °F)			
Max. junction temperature, Tj	100 °C (212 °F)			
Junction to heatsink thermal resistance, including pre-attached				
thermal interface, Rthjc	1.5 °C/W			
Max. case temperature, Tc	Tj - (P _D x Rthjc)			
	See chart below			
O 100 .u 95 90 0 2 4 6 8 10 0 2 4 6 8 10				
Output power dissipation in W				

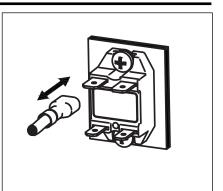
Duty cycle is considered to be 100%


Short Circuit Protection, Co-ordination Type 2

Part No.	Prospective short circuit current [kArms]	Mersen*	Siba
RF125	10	690 VAC, 25A gR 10x38 mm, FR10GR69V25	600 VAC, 25A gRL 10x38 mm, 60 034 34.25


* formerly Ferraz Shawmut

CARLO GAVAZZI


Installation

1. Peel off liner before mounting on heatsink.

2. Tighten screws alternately to max. 1.0Nm.

3. Insert / remove FASTON receptacle only with RF1 tightened to a surface.

Packaging

Accessories

Phase Change Thermal Pad

Ordering Key RFHT

- · Phase change thermal pad for RF1
- Dimensions: 19mm x 17mm

• 10 pcs. per box

• Weight per box, approx. 210 g

• Packing quantity: 10 pieces

Heatsinks

Ordering Key RHS5050RFD

- 3.5°C/W thermal resistance
- Dimensions: 80 x 50 x 51mm (Max. rating with mounted RF1 @ 40°Č is 15 AAC)
- Panel Mounting

Ordering Key RHS38ARFD

- 2.85°C/W thermal resistance
- Dimensions: 46 x 76 x 33mm (Max. rating with mounted RF1 @ 40°C is 16 AAC)
- Thru wall or Panel Mounting

For specific details refer to the individual datasheet of each heatsink model.